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Multigrid Monte Carlo Methods

Eugene Loh, Jr.
Theoretical Division and Center for Non Linear Studies
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

This paper is intended to be a tutorial on rnultigrid Monte Carlo techniques,
illustrated with twe examples. Path-integrs. quantum Monte Carlo is seen to
take only a finite amount of computer time even as the paths are discretized
on infinitesimally small scales. A method for eliminating critical slowing down
completely — even for models with discrete degroes of freedom, as in Potts models,
or discrete excitations, such as isolated vortices in the XY model — is presented.

L _Iniroduction

Monte Carlo methods have been used quite successfully to investigate many-body
systems in condensed-maiter physica. Stochastic simulations oa'cr the theorist
a tool to examine models in very-high-dimensional spaces in parameter regimes
which are inaccessible to analytical methcds. Yet many of the interesting phe-
nomena in many-body problems occur at or n2ar critical points in parameter
space where the critically siow physical dynamics, which make these points inter-
esting, affect the simulational dynamics as well. Hence, critical phenomens have
beel:: a particularly challenging source of difficulties for traditional Monte Carlo
techniques.

A variety of sttempts have bsen made to beat such critical slowing down. |
would like to mention two other speekers at this workshop in particular. The very
firrt talk was given by Bob Swendeen, whn spoke sbout non-universal dynamics
in _ lonte Carlo simulations. Swendsen and coworkers utilised a mapping hetween
Potts models, such as the Ising model, and percolation models, which do not suffer
from critical slowing down, to change the dynamics of Potts simulations. This
mapping was first described by FORTUIN and KASTELEYN (1], used for Monte
Carlo simulations by SWEENY (2], and adspted different'y by SWENDSEN and
WANG (3]. The resultant simulation flipe disconnected, stochaatically defined.
clusters at random. Since, at criticality, these clusters are present at ali length
scales, the dynamica oi the simulation slow down much leas dramadically with
system size than for local-update algorithms.

Also, Alan Sokal described multigrid methods which would block all variables
in a local domain together into a single coarse-grid variable. Coarsening deter-
ministically in this way, these simulations would perform lattice updates or. every
length scale and so, again, change the dynamics of the simulation. Such an ap-
proach proves to eliminate critical alowing dewn completely for “'trivial” Hamilto-
nians such as the gaussian model. For systema with discrete excitations, on the
other hand, the acceptance ratio down exponentially with the length scale
of the Monte Carlo move. Thus, these multigrid methods can only offer savings
in computer time by collecting degrees of freedom and processing them together
and by thermalizing continuous excitations The discrete excitations, in contrast,
still suffer from critical slowing down This has been cbserved in simple-blocking
sunulations of the XY model above the Kosterlitz-Thouless temperature, where
the discrete excitations are the isolated vortices, and in a ¢* scalar-field model



in a double-well potential [4]. Other, self-admittedly disappointing, attempts ES]
have been made to generalize the Fortuin-Kasteleyn mapping to arbitrary models.
And, of course, there have been many other efforts to address critical slowing down
that have not been represented at this workshop.

In this talk, I will try to give a tutorial on multigrid methods by discussing two
very simple models: a singie quantum-mechanical particle in a harmonic well and
the Potts model. From the harmonic oscillator, we will see how high-order inter-
polation schemes can be used to accelerate simulations of systems with continuous
degrees of freedom. The thermodynamics of a quantum particle may be studied by
summing over paths of the particle in imaginary time, discretized in nonzero time
steps Ar. We will see that the study can achieve the accuracy of an arbitrarily
small discretization step even in a finite amount of computer time through the use
of multigrid methods. rwill also discuss a stochastic coarsening procedure, which
was proposed by BRANDT (6] and studied by KANDEL et 'J.[T}. For the Potts
model, the procedure reduces to SWENDSEN and WANG's use of FORTUIN and
KASTELEYN's mapping to percolation models. Using the coarsening procedure
to employ multigrid ideas provides a means for eliminating critical slowing down
completely even in the presence of discrete excitations. This is seen in n. itignd
simulations on the two-dimensional Ising model.

Most of all, multigrid ideas are only starting to be used in Monte Carlo sim-
ulations. What [ hope to do, then, 18 simply to wvite others to think about
multigridding, using natural geometrical considerations in improving simulational
methods, especially in the study of critical phenomens.

2. Quantum mechanical harmonic ascillator

We first consider a single quantum-mechanical particle in a harmonic well. The
Hamiltonian describing the motiou of the particleis H =T + V with

2 mois?
= o— V= .
2m 2

(21

where the quantum-mechanical nature of the particle arises from the fact that
[p.2] = —=iA # 0. Of course, the natural solution to this modei comes from rewrit-
ing the position and momentum coordinates in terms of the creation and annihi-
lation operators b! and b, resulting in the diagonal, second-quantized Hamuitonian

H = Au(b'd +1/2)

Instead, anticipating numerical solutions of less tractable quantum Hamilto-
nians, we adopt Feynmann's path-integral formalism. While other speakers have
already developed this formalism, [ preseat the essential features here once more
Expanding the partition function

Z=Tr c—d” = Ty e’ N e 97 N | -arH (2.2)

as a product of L identical factors, we may now approximate exp(-Jdr /{) =
exp(=Ar T)exp(-Ar V) if Ar = J/L w» made suitably small. Working in a
position-coordinate hase, the factor exp(—4r V) e disgonal and easy to handle
T'he kinetic-energy factor, exp(—Ar T), 18 mmply the free-particle propagator in
unaginary time; 1t s the gaussian

e gllp-ar T - [T - Tg:_—_f)_: ]
. x'le |x>_’/2'm3 expl Ar')(..\rh)") . (23)

which. of course, becomes a delta function in the it Nro— 0 In thie hinut,
the tesultant expression for the partition function becomes & path integral of the
exponential exp( - 5) of the action over all paths in imaginary time  For numerical
stmulations. we will use the approximate expression for 7 arming from nonzero



Ar. This so-called Trotter approximation has been well studied [8] and is the
foundation of most quantum Monte Carlo work.

People speak of the quantum particle as being represented by a polymer or by
a world line in imaginary time. In the latter picture, the world line is described
only at discretized times Ar, 2A7, .... 3. At each of the discretized times, the
world-line coordinate feels an external force from the harmonic potential as well
as spring forces from its neighbors in imaginary time. In the limit Ar — 0,
these spring forces become infinitely strong. Herce, the world line is continuous in
imaginary time. Quantum mechanically, however, while such lines are continuous,
they are not differentisble. This physical property manifests itself in simulations as
statistical noise in measurements o{ observables which d=pend on short imaginary-
time scales. As one goes to the zero-temperature limit, § — oo, the “p:flmer"
becomes infinitely long with correlations on the imagiaary-time scaie r ~ | /Aw. In
the classical limit A — 0, the correlation time diverges and the world lines become
completely straight.

Using the Trotter breakup, we have reduced the quantum-mechanical partition
function to a high-dimensional sum amenable to classical Monte Carlo techniques.
At this point, one may treat the sum using a local-update di{orithm {?-], accepting
ot rejecting proposed moves z{r) — z(7)+6 according to the Metropclis algorithm.
Unfortunately, such “wiggles” of the world lines require § ~ v/ Ar for reasonable
acceptance ratios, meaning that Monte Carlo mcwves must become very small.
Furthermore, the Trotter formula assumes Ar Aw <€ 1, meaning that each local
move can only aflect a segment of the world line which is very short compared
to the correlation time. Of course, this situstion is exacerbated in the treatment
of many-particle systems, for which the correlation times can grow much larger,
especially if the system goes critical.

Oue solution to this difficuity was alluded to by Farid Abraham in his discus-
sion of quantum He on graphite. One may “Fourier accelerste” the simulation
by considering nonlocal moves of the form z(r) — 1(7r) + 6 - cos(2 - (r = 7g))
for all points on the world line at once. Not only may one use much larger step
sizes 8q for small {1, accelerating movement through phase space for the long tims-
scale modes, but one may also sample the various modes with different sampling
frequencies. Fourier-accelerated Langevin simulations take advantage of this flex-
ibility by assigning different “masses” to the various fourier modes of the system.
For example, \f one is interested i measuring only the particle’s mean-square dis-
placement, which depends only on {1 = 0 characleristics, then it is straightforward
tn show that the high-2 modes should be sampled with frequency ~ 2~ for op-
timal statistics. In contrast to most quantum Monte Carlo algorithma, for which
more lattice sweeps are needed as Ar — 0 to achieve the same quality statistics,
this procedure does not slow down since only & finite number of lattice sweeps will
be required for high-{] modes, even as the number of these modes diverges. Put
another way, the mean-square displacement depends somehow only on the very
longest time scale. The 11-* rule only gives one & sense of how often the other
mogu must be sampled to ensure ergodicity — that is, to ensure that the syttem
can sample all of phase space. Of course, the simulation does slow down n the
sense that the computer tune required for a single sweep increases as A7 vanishes.

{In contraat io long-time-sc e cbeervables, consider measurements of *he par-
ticle's kinetic energy. Naively, one would measure the expectation value ol

<z(r+ Ar)|Texp(-Ar T)lz(r) > / < z(r + Ar)lexp(-Ar T)le(r) > , (2.4)
giving one the kinctic.energy estimator

1 _m(x(r+ Ar) -~ z(r)?
Tar  °© 2 (Arh)? > (25)

<T»>»=

The nondifferentiability of the world hne requires the 1/2A 7 term for convergence
The estimator (2.5) depends on all modes of the wotld line and would require one
to sample one value of {1 as often as the next As the imaginary time vanable



18 discretized on a finer and finer scale, more and more lattice sweeps would be
reguired and yet the measurements would still be more noisy.)

In most Monte Carlo simulations, one updates only one degree of freedom at
a time, holding all others fixed for that update. Ergodicity is achieved by subse-
quently updating other degrees of freedom as well. In our multigrid approach, let
us hold fixed interpolations of the world line while updating a position coordinate
(7). Consider a short time segment ro — Ar < v < 1y + Ar of the world line,
which is defined by its coordinates at the discretized times, z(rp —~ A7), 2(mp), and
r(ro+Ar). We fix a particular interpolation of this segment by fixing the displace-
ment (7)) — (2(7o — A1) + 2(0 + A*)i{? of z(mp) from the linearly interpolated
pomg)ln (2(r0o — Ar) + z{rg + Ar))/2. Higher- and lower-order interpolations are
possible.

To multigrid the simulation. then, we first define the world line of the particle
on a very fine grid — that is, the imaginary time s diacretized on a very fine
time scale. We then “decimate” the positior coordinate at every other time step
by memorizing its displacement from an interpolated value which is defined in
terms of coordinates that are not decimasted. Since degrees of freedom have been
eliminated from the description of the world line, the cost of updates on the coarser
leveis decreases inversely with the time acale.

In order to perform updates on the coarser time scale, we must write expres-
sions for the renormalized action of the path. There ure two contributions to the
action over the segment rp ~ Ar, 1y, 7y +.Ar — one due to the kinetic energy and
the other due to the external potentiul. Writing 24 = z(7p £ A7) and 29 = 2( 1)
and fixing ¢ = 20 - (24 +2_)/2, get

m((z4 ~ 20)? -+ (80— 2_)7)
2 (A A)
- Ar"‘((lw = (5%:—' +e))?+ ((%5 +¢)-2_)?)

2 (Ar A)?
me?

(Ar A)?

57:.11’

F.'l(!+ - Z-),

= (2 Ar) 2 (2 ATA)? + ar

(2.6)

Hence the kinetic-energy contribution to the action on the coarser time scale has
the same form as that on the finer acale with Ar — 24r. The second term is simply
a contribution to the action which depends only on the particular interpolation,
¢, and not on the coarse degrees of freedom.

The potential energy contribution to the action is Sy = Ar 3, V(2(r)). The
contribution from the segment p — Ar, rp, n -~ Ar is therefore

(2Ar1) V(zy. 2) = Ar(V(24,20) + V(za,22)) (2.7

where V is the renormalized tial which depends on the particular interpola-
ton and 29, of corzree, 18 fixed with relation to the interpolated value (£, +r_)/2.

Whiie I’ grows in complexity aa it is coarsened repeatedly. this is not true in several
interesting cases. In particular, for the hurmonic potenial, V' remains quadratic
no matter how many times 1t @ coarsened.

The multignd algorithm, then, 18 composed of coarsenings, local Monte Carlo
updates on the varnious time scales, and uncoarrrnings. To go back to a finer
tume scale, one simply interpolates between the dis-retized times and adds back
in the Axed displacements Agmin, the cumber of times a fine ime scale must be
updated decreases rapidly with the time scale - in a quartic fashion ~ Q-4 for
the harmonic ascillator. tor example — while the processing cost scales ouly with
the inverse of the time scale The total cost of processing the very fine time scales,
then, s finite even as the finest level 18 discretized for a smaller and smaller Ar!
This 1n 10 contrast to founer accelerated algorithms, whoee processing time grows



linearly with 1/Ar, and to local-update Monte Carlo, for which processing grows
algebraically with 1/Ar even faster than for the fourier moves.

Multigridding is expected to be essential up to the correlation time of the world
line — in our harmonic oscillator, this time is ~ 1/Aw. For a system of many
quantum particles, this cotrelation time could be longer and could even diverge
critic?illy. Again, the short time «cales ({2 large) requize only negligibly frequent
sampling.

To make the connection to other collective moves, it should be noted that
fourier moves correspond to adding cosine waves to the world line. In contrast,
GOODMAN and SOKAL's (4] approach may be thought of as adding square
puises. The linear-interpolation scheme mentioned here corresponds to adding
triangular puises whose widths are the time scales at which the pulses are added.

In Fig. 1, the potential energy is plotted as a function of the logarithm G of the
number of levels for a single quantum particle of unit mass at inverse temperature
3 =5 in a harmonic weﬁ of level spacing Aw = 1. In the limit of few ievels, G
small, the error due to using a nongero Trotter parameter Ar = 8- 2-C results
in large deviations from the Ar — 0 limit (the dotted line). Three curves are
plotted, each represen:ing the same number of processings at the very coarsest
time scale, at which measurements of the potential energy were made. While the
coarsest level was always sampled the same number of times, finer levels were
only visited with relative sampling frequency ~ -7, where, drawing from the
fourier picture, () is the imaginary-time frequency corresponding to the time scale
~ 1/9). The three curves are for p = 1,2,3. Notice that the three data sets
are essentially indistinguishable. Both the data points and the error bars are
independent of p; hence, it is not important to visit the fine time scales often. Ia
particular, for p = 3, only s finite amount of computer time would be spent on
the finest scales even while the number of such levels goes to infinity. Meanwhile,
it is also clear from the systematic errors ai small G that it is crucial to include
these finr time scales to reduce the error due to the Trutter breakup. Notice that
this statement is equivalent to the need for ergodicity — inciuding fine time scales
is of no consequence if these levels are never sampled. Our rule of thumb from
the harmonic wscil. i, sgun, i that p w £ offers the bast statistics. In our
illustration, processing time exponentially, 29, for p = 1, linearly, G, for
p =2, and not at all for p > 2 as & function of the aumber, G, of levels.
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To close out this section on the quantum particle, we may summarize by saying
that multigrid methods ailow one to study the limit Ar — 0 in a finite amount
of computer time. (If one chose to store all the path interpolations, however,
the meinory requirements would grow.) These methods offer efficient numerical
solutions for quantum problems — indeed, this single-particle illustration was
motivated by work in progress on anharmonic lattice dynamics, whose treatment
by these methods is quite straightforward. Multigridding allows one 1o make large-
scale moves through configuration space by stochastically eliminating degrees of
freedom on smaller scales.

Nevertheless, one shortcoming, reflective more of path-integral formulations
rather than multigrid Monte C+-!-. itself, must be mentioned. We have discussed
messurements of long-time-scal: observables, such as the potential energy of the
system. Unfortunately, many interesting quantities — the specific heat and kinetic
energy, as examples — depend on short-time hehavior. As discussed above, how-
¢er, the nondifferentiability of quantum world lines makes measurement of such
quantities difficuit. Inclusion of short-time contributions is required to remove sys-
tematic errors in the measured averages. Short time scales contribute little to the
averages but substantially to the nose. Sampling these fluctuations more often is
an unattractive tact as this would be quite time consuming, even in a multigrid ap-
proach. Several short-time-dependent obeervables, fortunately, can be expressed in
terms of long-time averages. The specific heat, as many Moate Carlo workers well
know. is often best measured by differentiating the energy, which is less Jependent
on short times than the specific heat itself, than by measuring fluctuations ia the
energy, which is what a specific-heat o&eruor would do. The kinetic energy, in
turn. can be measured using the virial theorem. As a generalization, we note that
the expectatior value of tae commutator of the Hamiltonian H = T + V with any
operator A is zero. Thus, < [T, A} >= — < [V A] >. Since T ~ p?, [T\ A)] has one
fewer factor of » and one more factor of p than does A. On the other hand, V
is composed only of position var'ables and so [V, A] hes one more factor of z and
one fewer factor of p than does ... This identity, therefore, relutes the averages of
quantities with different numbers of p's, which have great short-time dependences,
and z's, which have only long-time dependence. For example, A = zp gives the
vinial theotem < p3/2m >=< zV'(? >. In practice, long-time estimators do not
exist for all observebles and when they do they ar= not always well behaved. Alter-
natively, one can express measurements as sums of contributions from from each
of the separate time scales as we saw in (2.6), for example, for the kinetic-ener
contribution St to the action. The coatributions, of course, become progressively
more noisy as one goes to shorter time scales. On the ctber hand, in the lirait of
short time scales, one may construct estimates of the coatributions that deperd
only on long-lime averages. For example, for St, the contribution from the short-
est time scale is < m(zo — (24 + 7_)/2)3/(Av A)? >. Since correlatons such
as < 2(r + Ar)z(r) > and < t}r + Ar)z(r - Ar) > can be written for small
Ar solely in terms of functions of position coordinates (functions of z, V', and its
denivatives), long-tumne estimates of short-time coatributions to averages can be
constructed. It 18 not clear how useful this approach is in practice.

Of course, one could simply live with small Ar errors and settle for using
multigridding only to beat critical slowing down, which may arise in many-body
problems.

i 2otia Models

Now let us turn to the question of problems with discrete excitations. In the case
of Potts models, for example, changes in the energy ciesrly must come in finite
quanta whi'h are not small on an energy scale oel?'y the critical temperature |
include not only syatems described by discrete degrees of freedom, but also mod-
els with continuous vanables which have discrete excitations In the ¢/ ral XY
model. for instance, the spin variables are continuous and give rise to tinuous
excitations such a4 apin waves They also allow discrete excitations. how: .er. such
as individual vortices, which characterize the phase transition at the hosterhitz-



Thouless temperature. Our strategy is to design Monte Carlo moves on all length
scales with energy chang=s always of the same, hopefully small, scale. Up to
now we have discussed only moves which sre everywhere gradual. Unfortunately,
for discrete-variable models, such moves are no longer possible. For continuous-
variable models, such Monte Carlo moves are possible, but they are ineffectual
in thermalizing the discrete excitations. Alternatively, one could consider making
non-gradual moves over domains of variables — flipping a prescribed iomain of
lsing spins, for example, or rotating a selected domain of XY spins. These moves
suffer from exponentially decreasing acceptance ratios as the domains grow, mean-
Ing that i practice the simulation still does not incorporate large-scale moves.

Here I will describe s stochastic coarsening procedure proposed by BRANDT
(6] which allows performing local updates on a coarser length scale even without
incremsing the scale of eneegy changes {which would decrease the acceptance ra-
tio). Used in conjunction with multigridding techniques, this procedure allows the
simulation of many-body prcblems without any critical slowing down.

We eliminate the finest length scales and so reduce the number of degrces of
freedom with a stochastic cosrsening procedure. Disregarding geometrical consid-
erations for the moment, consider a model whose thermodynamics are governed
now by a classical Hamiltooian H = Hy + V, where factors of ~8 = ~1/kpT
have been absorbed into H. Here, kg and T are Boltamann's constant and the
temperature, respectively, and Ho is somehow easier to simulate than the original
Hamiltonian. The probability of finding the system in some state Q is proportional
to the Boltamann weight exp(H(Q)), where 4 (Q) is the energy of the system in
state Q. We may “kill” the contribution V o the Hamiltonian stochaestically
by either “deleting” it with probability py = cv exp(—V(Q)) or by “freesing” it
with probability p; = 1 — pg. If the interaction is frosen, only states Q' with
VIQ) = V(Q) are considered in the ensuing simulstion. If the interaction is
deleted, no such restriction is placed on the states. In either case, the thermo-
dynamics are subsenquently governed only by the simplified Hamiltonian Hg. The
coefficient ¢y must be chusen so that py.py ¢ [0,1] — pg and p; must be proba-
bulities. The largest choice of cy produces the best statistics. By assumption, Ho
is eagier to study than N and eo the simulation will proceed more efficiently than
before.

Clearly, this procedure ir otronﬂyc ergodic since there is always & nonseroc prob-
ability that no restriction will be placed on the simulatioa, allowing nonsero tran-
sitica probe.bilities between all states. It also satisfies detailed balance. To sve
this, firet consider two states Q and @’ with V(Q) t V(@Q’). Then, a transiticn
from one state to the other can take p oaly if V has been deleted:

Heo(Q")
TQ —@)=cy V@ .2 7 . (3.1)

where Z; 1» the pactition function for the reduced Hamiltonian. Now,
TQ — @) V@ MA@ HAQWV@Q)  H@Q)
TQ@ — Q) e V@) Bel@ — LAADIVIQ) — A

(3.2)

Alternatively, if V(Q) = V(Q’), the intaraction V may either be deleted or (rosen:

He Q) HeQ)

TQ— @) =cy e V(@ +(1l ~ecy e'v‘q))-—-ﬂ—

0
~-¥(Q) -viQ)
cy - l —-Cy € ”.(01)
= + e , (3.3)
(F5 )

where Z{ 1 the partition function for the reduced Hamiltonian over the restricted
space. Then, using V' (Q’') = V'(Q), we find

rQ—q) _ eHMat Q) _ eHe(Q)4V(Q) _ eHeG4V(Q) _ eH(Q)
T(Q — Q) eMel@ T HaQ+VIQ) T eHatQ)+Y(Q) T JHIQ)

(3.4)



completing the proof of detailed balance.

In practice, Hy is still nontrivial to simulate efficiently and so additional terms
of the Hamiltonian must be killed. After killing all the interactions in H, one
arrives at a system which is completely decoupled — and 80 is trivia! to simulate
— but it is subject to an arbitrary set of restrictions on its states.

As zr example, consider the lsing model H = 3~ .. Ki;sis;. The optimal
probability for deletion is ps = exp(—K,;(1 + 8,8;)). nteractions between an-
tiparaliel spins will always be deleted; only pualle" spins can be frozen together
in ferromagnetic models. We may kill the interactions K;s,5; one at a time until
we are left with irregular, fractal blocks of spins which cre completely decoupled
from one another. This coarsened system is trivial to study and so statistics over
many such coarsenings are easily gathered. This procedure differs from standard
block-spin projection methods in that here blocks are generated in a stochastic
manner and are generally of irregular shape. As one can see, for Potts models
the coarsen:ng procedure is identical to that used by SWENDSEN and WANG
[3]. Due to the restrictions that are introduced, however, Swendsen and Wan
still observe critical slowing down, albeit with a considerably reduced dynlmicﬂ
exponent.

To eliminate critical slowing down completely, we incorporate the stochastic
blockinf procedure as part of a multigrid scheme. Instead of coarsening the system
until all that *emains are large, decoupled blocks of spins, we coarsen out only the
very finest length scales at each level of the multigrid slgwithm. The coarmened
system is composed of small blocks, typically all of some sa all length scale b, which
interact according to a reduced Hamitonian. We have e.'plored several ways of
killing only fine length scales; perhape the most transparent, though perhape aiso
not tge best. is one in which some fraction of the bonds selected at random are
killed. The coupling between two coarse blocks is the sum of the living couplings
that connect fine-lattice spins frosen to those blocks. Notice that long-range in-
teractions may be generated, but they are improbable and their presence does not
influence the convergence of the algorithmn. The resultant “simplified” system i
stored. It is studied by further coarsening.

While Swendsen and Wang coarsened their Potts lattices completely for each
iteration of their simulations, we return to intermediate length scales. In particu-
lar, we coarsen the lattice ¥ times at each level of processing before returning to
the next finer level In this language, Swendscn and Wang, in effect, use v = |. To
“uncoarsen” the system, decoupled blocks should be set to some arbitrary value
of spin, all fine-lattice spins should be set to the block spic to which they were
frozen, and the finc-lattice couplings should be restored. Metropolis updates may
be performed at any length scale Ly using a standard Metropolis algorithm on the
block spins at that length scale using the Hamiltonian appropriate to those blocks.

Our Monte Caslo method “cycles” through all the various length scales (4] At
each intermediate length scale, the system is coarsened v times before it is uncoars-
ened. Each time the system reaches the coarsest level, at which all the blocks are
decoupled, measurements may be made and the system is immediately uncoars
ened. The cycle ends each tirne the finest level is reached. A few Metropols sweepe
are performed between coarsenings snd uncoarsenings. These Metropolis sweepe
are not essential to defeating critical slowing down and, in practice, performung
more than one such sweep at a time 18 ineflective 1n acceleating the procedyre.

We carried out simulations of the d = 2 Ising model on square lattices from
42 to 1287 sites with periodic boundary conditions, using a cycle of v = 2 with
rescaling factor & = 2. Starting from fully magnetized states, we measuied the
decay of the energy to its equilibrium value for an ensemble of configurations.
The energy relaxation was described by an exponential decay with, surprusirgly,
no discernable short-time transients. The relaxation times were r(L) =36 £ 05,
independent of linear sute L for L > 16 In contraat, other Monte Carlo aigorthms
show critical slowiny down — (L) ~ L' -~ with dynamical exponentz z x 2|
for standard mingle-spin-fir Monte Carlo and : 2 035 for Swendsen and Wang's



method. Similar measurements for the magnetic susceptibility at criticality showed
the relaxation time saturating at r = 7 + 2, again at L = 16, for our algorithm.

But how does our approach eliminate critical slowing down? The first answer
1s simply that it does and not every algorithm that allows large-scale Monte Carlo
moves achieves this. If the coarsening procedure tended to create coarse lattices
with higher connectivities or stronger bonds than those of the fine lattices, the
acceptance ratios for the large-scale moves would become prohibitively small. On
the other hand, if the connectivities tended to be lower or the couplings weaker,
blocks would become decoupled at short length scales and large-scale flips would
not be possible. Thus, in addition to the empirical evidence that our multigrid
Monte Carlo algorithm produces a dynamical exponent z = 0, it is important
to note that we find that our coanenindg rocedure yields similar distributions of
bonds and connectivities in lattices at difierent length scales.

Swendsen and Wang alsc produce Monte Carlo moves that flip blocks at all
length scales. Why then do they not achieve z = 07 Consider, again, the multi-
grid coarsening procedure, whici essentially treats interactions first at the finest
iength scales and ther at increasingly longer length scales. The reason this is only
“essentially” true is that the various length sc cannot de treated compietely
independently — to some extent, whenever an interaction is “frozen” at a fine
Ien.ﬁ.h scale, reatrictions on the allowed states ar~ introduced at all coarser length
sc as well. For example, if interactions are killed (more importantly, frozen)
up to some length scale, then the coarsened Hamiltonian were simulated infinitely
fast, and finally the fine-lattice spins restored and the procedure iterated, there
would still be a correlation time. %hu time wouild grow with the number of levels
that had been frozen and from scaling arguments we would conclude that the rate
of growth would be independent of level nuiaber. Physically, it would be nice to
decouple all the various length scales. In practice, we do not know how to desifn
stochastic coarsening pr ures that will do this for nontrivial models. Results
on Y = 1 cycles tell us to what extent a particular cosrsening procedure inter-
locks the length scales, measuring the amount of correlations that have built into
the simulation by killing interactions over some number of length scales. Thus,
each level must be visited yp,, times more often than the next finer level, where
Ymm = %', b is the length rescaling factor which describes the degree of coarsening
that takes place between consecutive levele, and z, s the dynamical exponent for
v = | cycies. We find that z; is in fact scale invaziaat and, for the coarsening
procedure that we and Swendsen and Wang use, is z; = 0.35 for the d = 2 Ising
model.

Exponentially many ccarsenings must take place at the coarser levels. This
increased processing is acceptable since processing at coarser levels is cheaper
due to the smaller number of degrees of freedom. Indeed, the work function is still
proportional only to lattice size 30 long as the increase in the amount of proceui:i;
1s smaller than t{e amount by which the number of degrees of freedom is reduced:
v < b4, where d is the dimensionality of the system. This is cot s practical difficulty
since the dynamical exponent for the v = 1 cycle is typically much smaller than
the dimensionality of the system: for the Ising (¢ = 2 Potts) model, complete
elimination of critical slowing down for a finite amount of processing time per site
requires 49 % < v < b7 in two dimensions and 897 < v < #? in three dimensions.
For the 3-state Potts model in two dimensions, (°® < v < $. In our simulations
for the two-dimensional Ising model, we chose v = 2 and b = 2, which is clearly
within the regime of no critical slowing down.

Aside from geometrical considerations, . is clear that it is most efficient to
perform most of the processing at the coarsest levels, f~r which there are the fewest
degtees of freedom. The role of multigrid ideas and tne above scaling arguments
1s L0 suggest coarsening schemes and parameter regimes for which the processing
time 18 not only lowered but, in fact, critical slowing down is eliminated completely.



4. Conclusions

In multigrid methods, one coarsens the degrees of freedom to reduce the compu-
tational complexity of the probiem and to enable local processing at coarse levels
to effect large-scale changes on the fine Iattice. In multigrid Monte Carlo, random
processes are used bath to represent coaraened interactions stochastically, but ex-
actly, and also to update the coarsened degrees of freedom with local Monte Carlo
moves.

In the longer range, the aﬁplicuion of multigrid Monte Carlo to frustrated
systems would be interesting. Uniform frustration presents no special difficulties.
In contrast, it is not clear how best to model spin glasses, which have random
frustration.

Some of this work was motivated by studies of dynamics. While the advantage
of techniques that beat critical siowing down is that they change the dynamics
of the system, relating the dynamics of a d-dimensional model to the equilibrium
statisticai mechanics of a d + 1-dimensional problem [10] allows one to employ
multigridding for nonequilibrium studies.[11]

Finally, a number of interesting technical questions remain. How, {or instance,
does one optimize the coarsening procedures to reduce statistical noise and to
minimize the number of visits to the finest levels? What ways are there of con-
structing estimators which have minimum noise and depend only on very large
scales? How can one further simplify complicatsd effective potentials ou coarse
length scales stochastically? And what detailed tests can be performed of the
scaling conjectures presented above?

But most of all, multigrid Monte Carlo is still a very young class of techniques.
Clearly, a great deal of work in the near future will consist simply of knocking
down straw men — mujtigridding straight-forward Monte Carlo simulations in
order to draw up a more lengthy list of credentials. Among such systems ars
models with both continuous and discrete excitations, such & the XY modei, with
its spin waves and independent vortices, and many-boson Hamiltonians, which are
described by continuous world lines as well as discrete ex-hange effects.
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